

Philadelphia University Faculty of Science **Department of Basic Sciences and Mathematics Fall semester 2020/2021**

Course syllabus

Course title	General Physics 1		Course code	0211101	
Lecture Time		Time	Days	Location	Lecturer
	Section (4)	11:10 - 12:00	Sun, Tue, Thu.	Microsoft Teams	Ms. Mariam
	Section (34)	18:10 -19:00	Sun, Tue, Thu.	Microsoft Teams	Ms. Mariam
	Section (35)	17:45 -19:15	Mon, Wed	Microsoft Teams	Ms. Mariam

Academic Staff Specifics

Name Rank Office number and location	Mariam .F. Al -Qderate. MSc in applied Physics Faculty of Nursing (423; 2 nd floor).	
Office hours	Sun, Tue ,Thu	03:00-04:00 / 12:00 - 01:00
E-mail address Phone	Mon , Wed mqderate@Philadelphia.edu.jo + 962 6 4779000 ,Ext:2335	03:00- 04:00

Course textbook

TitlePhAuthorRaPublisherCeEdition9thYearJarISBN112

Physics for Scientists and Engineers Raymond A. Serway and John W. Jewett Cengage Learning 9th Edition. January 17, 2013 1133954057

Allocation of Marks				
Assessment Instruments	Mark			
Midterm examination	30			
Assignments & Quizzes	20			
Final examination	50			
Total	100			

1

Course/ academic calendar

period	Basic and support material to be covered
6 hours	CHAPTER 3: Vectors:
	Coordinate systems, vector and scalar quantities, some properties of vectors,
	components of a vector and unit vectors, the scalar product of two vectors (7.3), the
	vector product (11.1)
3 hours	CHAPTER 2: Motion in One Dimension:
	Displacement, Average velocity, Instantaneous velocity, average
	acceleration, instantaneous acceleration, one dimensional motion
	with a constant acceleration, free falling objects.
2 hours	CHAPTER 4: Motion in Two Dimensions:
	The displacement, velocity and acceleration vectors, two-dimensional motion with
	constant acceleration, projectile motion, particle in uniform circular motion,
	Tangential and Radial acceleration.
	Midterm exam: (To be announced by the dept.)
4 hours	CHAPTER 5: The Laws of Motion:
	The concept of force, Newton's first law and inertial frames,
	inertial mass, Newton's second law, weight and the force of
	gravity, normal force, Newton's third law, free body diagrams,
	friction force, some applications of Newton's laws.
2 hours	CHAPTER 6: Circular Motion and Other Applications of Newton's Laws:
	Newton's second law applied to uniform circular motion, non-uniform circular
	motion.
4 hours	CHAPTER 7. Work and Energy.
4 110013	Work done by constant force work done by varying force kinetic energy and the
	work energy theorem Potential energy of a system conservative and non-
	conservative forces conservative forces and potential energy
4 hours	CHAPTER 8: Conservation of Energy:
	Conservative and non-conservative forces. Potential energy
	Mechanical energy and Its conservation Problem solving using
	conservation of mechanical energy conservation of energy principle
	Energy conservation with dissipative forces Applications
4 hours	CHAPTER 9: Linear Momentum and Collisions :
Thous	Momentum and Its relation to force Conservation of momentum Collisions and
	Impulse Conservation of energy and momentum in Collisions Elastic collisions in
	one dimension Inelastic collisions. Collisions in two or three dimensions. Central
	of mass (CM) Central of mass and translational motion. Applications
6 hours	CHAPTER 10: Rotational Kinematics and Dynamics :
0 11001 5	Angular quantities Vector nature of angular quantities Constant
	angular acceleration. Torque Rotational dynamics: Torque and
	rotational inertia Solving Problems in Rotational Dynamics
	Determining moments of Inertia Rotational kinetic energy
	Rotational plus translational motion: Rolling Applications
5 hours	CHAPTER 11: Rolling Motion and Angular Momentum
	Angular momentum-objects rotating about a fixed axis. Torque as
	a vector Angular momentum of a particle. Angular momentum and
	torque for a system of particles: General motion. Angular
	momentum and torque for a rigid object. Conservation of angular
	momentum Applications
	CHAPTER 12: Static Equilibrium and Electicity:
	Static aquilibrium: Electicity and fracture Conditions for aquilibrium Solving
3 hours	state equilibrium, Elasticity and halange. Electricity Strong and Stroin, Erecture
	Applications
	Applications.
	Final exam: (10 be announced by the dept.)